กรุงเทพฯ – 24 กรกฎาคม 2567 – การ์ทเนอร์เผยผลสำรวจล่าสุดของผู้บริหารระดับสูงกว่า 1,800 ราย พบว่า 55% ขององค์กรมีคณะกรรมการที่ดูแลด้านการใช้งาน AI หรือ AI Board และ 54% ระบุว่ามีหัวหน้าด้าน AI หรือ AI Leader ที่ประสานงานและดูแลกิจกรรมต่าง ๆ ภายในองค์กร
ฟราสซิส คารามูซิสรองประธานฝ่ายวิจัย การ์ทเนอร์ กล่าวว่า “จากผลการวิจัยพบว่าองค์กรทั่วโลกมีความเห็นต่างกันในเรื่องความจำเป็นของการมีคณะกรรมการด้าน AI หรือ AI Board ซึ่งคำตอบของประเด็นนี้คือองค์กรจำเป็นต้องมี AI Board เพื่อขับเคลื่อนกลยุทธ์ AI ให้บรรลุเป้าหมาย โดยเปรียบเสมือนคณะกรรมการกลางที่คอยกำหนดทิศทาง ดูแล และควบคุมการใช้ AI ให้เกิดประสิทธิภาพสูงสุด พร้อมลดความเสี่ยง และสร้างมูลค่าเพิ่มให้กับองค์กร อย่างไรก็ตาม รูปแบบ ขอบเขต ทรัพยากร และกรอบระยะเวลาของการจัดตั้ง AI Board นั้นขึ้นอยู่กับบริบทของยูสเคส และความพร้อมของแต่ละองค์กร โดยองค์กรบางแห่งอาจดำเนินการด้วยมาตรการระยะสั้น แต่บางแห่งอาจเปลี่ยนแปลงรูปแบบการทำงานในระยะยาว”
จากการสำรวจผู้บริหารระดับสูง 1,808 ราย ที่เข้าร่วมเว็บบินาร์ของการ์ทเนอร์ เมื่อเดือนมิถุนายนที่ผ่านมา ได้แลกเปลี่ยนความคิดเห็นกันในมุมมองต่อการประเมินต้นทุน ความเสี่ยง และมูลค่าของโครงการ AI และ GenAI ใหม่ ๆ โดยผลสำรวจนี้ไม่ได้สะท้อนถึงภาพรวมตลาดโลก แต่ให้ข้อมูลเชิงลึกของมุมมองผู้บริหารที่มีต่อเทคโนโลยี AI และ GenAI
AI Board ต้องชัดเจนเรื่องกฎเกณฑ์ ที่สอดคล้องกับเป้าหมายธุรกิจ
ความรับผิดชอบต่อ AI นั้นกระจายออกไป พนักงานจากหลายแผนกมักมีส่วนร่วมในการริเริ่มโครงการด้าน AI ขณะที่บางองค์กรดำเนินงานแบบกระจายอำนาจ บางแห่งทำงานแยกส่วนกัน หรือบางองค์กรยังไม่ชัดเจนว่าจะนำ AI ไปใช้ในแง่ใด สิ่งนี้ทำให้เกิดความท้าทายในการระบุผู้รับผิดชอบต่อผลลัพธ์ที่เกิดขึ้นจากการใช้งาน AI ทั้งแง่บวกและลบ โดยผลสำรวจนี้ยังชี้ให้เห็นว่า มีเพียง 1 ใน 4 ของผู้ตอบแบบสอบถามเท่านั้นที่สามารถระบุผู้รับผิดชอบต่อโครงการริเริ่มด้าน AI ได้อย่างชัดเจน (ดูรูปที่ 1)
ภาพที่ 1: ผู้มีความรับผิดชอบในการส่งมอบ AI
ที่มา: การ์ทเนอร์ (มิถุนายน 2567)
“AI Board ต้องประกอบด้วยสมาชิกจากหลายสาขาวิชาและหน่วยธุรกิจ ซึ่งความหลากหลายนี้จะช่วยให้มั่นใจได้ว่าบอร์ดจะมีมุมมองครอบคลุมประเด็นที่เกี่ยวข้องกับ AI ในด้านต่าง ๆ นอกจากนี้บอร์ดยังต้องมีความคล่องตัวในการปฏิบัติงาน สามารถตัดสินใจได้อย่างมีประสิทธิภาพและรวดเร็ว โดยแต่ละองค์กรต้องหาแนวทางที่ดีที่สุดในการจัดตั้งคณะกรรมการที่ดูแลด้านการใช้ AI ของตน สิ่งสำคัญคือต้องทำให้แน่ใจว่าบอร์ดจะมีขนาดไม่ใหญ่เกินไปจนทำงานได้ไม่เต็มประสิทธิภาพ พร้อมทั้งต้องระบุกลไกชัดเจนด้านอำนาจการตัดสินใจและการขับเคลื่อนฉันทามติ” คารามูซิส กล่าวเพิ่มเติม
คารามูซิส อธิบายเพิ่มว่า “สมาชิกใน AI Board ควรมีความเชี่ยวชาญที่เชื่อมโยงกับขอบเขตงาน ควรเป็นผู้บริหารระดับสูงและมีประสบการณ์ มีทักษะที่แข็งแกร่งทั้งในด้านกลยุทธ์และการดำเนินงาน และอย่างยิ่งโดยเฉพาะคือมีเป้าหมายด้าน GenAI”
หัวหน้าด้าน AI มีอยู่ทั่วไปในองค์กรมากกว่า CAIO
ผลการวิจัยชี้ให้เห็นว่า แม้องค์กรจำนวนมากจะมีหัวหน้าหรือผู้นำที่ดูแลด้าน AI แต่ตำแหน่งของพวกเขาเหล่านี้อาจจะไม่ได้เรียกว่า “Chief AI Officer” (CAIO) เสมอไป โดยผู้นำระดับสูง 54% ระบุว่าองค์กรของตนมีหัวหน้าฝ่าย AI หรือผู้นำ AI ขณะที่ 88% บอกว่าผู้บริหาร AI ของตนนั้นไม่ได้มีตำแหน่งเป็น Chief AI Officer (CAIO)
แม้ว่าคณะกรรมการบริษัทจะเป็นผู้กำหนดทิศทางให้กับผู้นำระดับสูง (C-suite) แต่คณะกรรมการส่วนใหญ่ก็ไม่อยากเพิ่มตำแหน่งผู้นำระดับสูงนี้ อย่างไรก็ตาม คณะกรรมการยังคงต้องการให้มีผู้นำด้าน AI เพื่อรับผิดชอบภาพรวมในการบริหารจัดการเทคโนโลยี AI ภายในองค์กร “แม้ว่าเทคโนโลยี AI และ GenAI จะมีบทบาทสำคัญในทุกแง่มุมของงาน กิจกรรม และกลยุทธ์องค์กร แต่บุคคลหรือทีมที่รับผิดชอบการประสานงาน AI ในองค์กร ไม่ได้หมายความว่าจะต้องมีตำแหน่งเป็นผู้บริหารระดับ C-Level” คารามูซิส กล่าวทิ้งท้าย
อลัน พรีสต์ลีย์ รองประธานฝ่ายวิจัยการ์ทเนอร์ กล่าวว่า “วันนี้ Generative AI (GenAI) กำลังกระตุ้นความต้องการชิป AI ประสิทธิภาพสูงสำหรับดาต้าเซ็นเตอร์และในปี 2567 นี้มูลค่าของ AI Accelerators ในเซิร์ฟเวอร์ที่ทำหน้าที่ประมวลผลข้อมูลจากไมโครโปรเซสเซอร์จะมีมูลค่ารวม 21 พันล้านดอลลาร์สหรัฐ และเพิ่มขึ้นเป็น 33 พันล้านดอลลาร์สหรัฐฯ ภายในปี 2571”
การ์ทเนอร์คาดการณ์ว่าการจัดส่ง AI PC จะสูงถึง 22% ของยอดรวมการจัดส่งพีซีทั้งหมดในปี 2567 และภายในสิ้นปี 2569 การซื้อพีซีในระดับองค์กรจะเป็น AI PC ทั้ง 100% โดย AI PC ประกอบด้วยหน่วยประมวลผล Neural Processing Unit (NPU) ที่ทำให้ AI PC สามารถทำงานได้นานขึ้น เงียบขึ้นและเย็นลง โดยหลังบ้านมี AI ทำงานอยู่อย่างต่อเนื่อง พร้อมสร้างโอกาสใหม่ ๆ ด้วยการดึงศักยภาพของ AI มาปรับใช้ในกิจกรรมประจำวัน
แม้รายได้จากเซมิคอนดักเตอร์ AI จะยังเติบโตเป็นเลขสองหลักในช่วงระยะเวลาคาดการณ์ ซึ่งจะมีอัตราการเติบโตสูงสุดในปี 2567 (ดูตารางที่ 1)
ตารางที่ 1. คาดการณ์รายได้เซมิคอนดักเตอร์ AI ทั่วโลก ระหว่างปี 2566-2568 (หน่วย: ล้านดอลลาร์สหรัฐฯ)
ปี 2566
ปี 2567
ปี 2568
รายได้
(หน่วย: ล้านดอลลาร์สหรัฐฯ)
53,662
71,252
91,955
ที่มา: การ์ทเนอร์ (พฤษภาคม 2567)
รายได้ของชิป AI จาก Compute Electronics สร้างสถิติส่วนแบ่งสูงสุดในกลุ่มอุปกรณ์อิเล็กทรอนิกส์
คาดว่าในปี 2024 รายได้จากชิป AI จากอุปกรณ์อิเล็กทรอนิกส์คอมพิวเตอร์จะมีมูลค่ารวม 33.4 พันล้านดอลลาร์ ซึ่งจะคิดเป็น 47% ของรายรับจากเซมิคอนดักเตอร์ AI ทั้งหมด รายรับจากชิป AI จากอุปกรณ์อิเล็กทรอนิกส์ในยานยนต์คาดว่าจะสูงถึง 7.1 พันล้านดอลลาร์ และ 1.8 พันล้านดอลลาร์จากอุปกรณ์อิเล็กทรอนิกส์สำหรับผู้บริโภคในปี 2567 ตามลำดับ
หลายองค์กรมักมองข้ามผลกระทบต่อสิ่งแวดล้อมจากการเปลี่ยนผ่านสู่ดิจิทัล แต่แท้จริงแล้ว Sustainable IT หรือ ไอทีที่เป็นมิตรต่อโลกคือหัวใจสำคัญเพื่อให้บรรลุเป้าหมายการลดก๊าซเรือนกระจก (GHG) การบริหารจัดการการใช้น้ำ การจัดการขยะและผลกระทบที่อาจเกิดขึ้นกับความหลากหลายทางชีวภาพ
แผนแม่บทสำหรับไอทีที่ยั่งยืนเป็นความจำเป็นเพื่อช่วยให้ผู้บริหารฝ่ายจัดการโครงสร้างพื้นฐานและฝ่ายปฏิบัติการ (I&O) บรรลุเป้าหมายด้านความยั่งยืนขององค์กร แม้ว่าพวกเขาจะไม่สามารถบรรลุเป้าหมาย Net Zero ได้ในช่วงทศวรรษ 2020 แต่เทคโนโลยีที่อยู่ระหว่างการวิจัยและพัฒนาจะช่วยเร่งความคืบหน้าในช่วงทศวรรษ 2030
เป้าหมายขององค์กรคือการ Bend the Curve หรือการเปลี่ยนแปลงเงื่อนไขปัญหาไปในทิศทางที่ดีขึ้น เพื่อบรรลุเป้าหมายด้านความยั่งยืนด้านสิ่งแวดล้อม ที่ต้องลดการปล่อยก๊าซเรือนกระจกที่เกิดจากไอทีให้เกิดขึ้นอย่างต่อเนื่อง แม้จะมีปริมาณการปล่อยก๊าซเรือนกระจกเพิ่มขึ้นก็ตาม
ตระหนักถึงปัญหาด้านการบริโภคพลังงานของ Generative AI
Generative AI นั้นพึ่งพาโมเดลภาษาขนาดใหญ่ที่ได้รับการเทรนจากข้อมูลมหาศาล ซึ่งต้องระบายความร้อนด้วยน้ำหล่อเย็นและใช้พลังงานไฟฟ้า หรืออาจใช้พลังงานทั้งสองจำนวนมหาศาล แม้ในระยะยาวการปล่อยก๊าซเรือนกระจกที่เกี่ยวข้องกับไฟฟ้าจะลดลงเมื่อมีการใช้แหล่งพลังงานหมุนเวียนมากขึ้น ซึ่งโมเดล Generative AI ที่ทรงพลังยิ่งขึ้นจะต้องการความสามารถในการประมวลผลมากขึ้นตามไปด้วย
Generative AI จะต้องมีประสิทธิภาพการทำงานเทียบเท่ากับสมองมนุษย์ เพื่อให้เป็นมิตรกับสิ่งแวดล้อมมากขึ้น สาเหตุหนึ่งที่ทำให้สมองประหยัดพลังงานมากก็คือ สมองสามารถจัดระเบียบความรู้ในโครงสร้างเครือข่ายได้ โดยแนวทางที่ใกล้เคียงที่สุดคือ Composite AI คือการรวมโมเดล AI หลายแบบเข้าด้วยกันเพื่อให้ได้ประสิทธิภาพและความแม่นยำที่ดีขึ้น ซึ่งใช้โครงสร้างเครือข่ายและเทคนิคคล้ายกันเพื่อเสริมกำลังมหาศาลด้วยวิธีการเรียนรู้เชิงลึกในปัจจุบัน
Generative AI ยังบริโภคพลังงานไฟฟ้าและน้ำเป็นหลัก ดังนั้นการหยุดเทรน AI ในทันทีหรือการเก็บข้อมูลการเทรนโมเดล การนำโมเดลที่ได้รับการเทรนแล้วกลับมาใช้ใหม่ และการใช้ฮาร์ดแวร์และอุปกรณ์เครือข่ายที่ประหยัดพลังงานมากขึ้น จะสามารถสร้างสมดุลแนวทางปริมาณงานในดาต้าเซ็นเตอร์แบบ “ตามสถานการณ์และความเป็นจริง – Follow The Sun” ซึ่งดีกว่าสำหรับการผลิตพลังงานสะอาด กับการใช้แนวทาง “แยกเดินออกมา Unfollow The Sun” สำหรับประสิทธิภาพการใช้น้ำที่ดีกว่า
อีกวิธีหนึ่งในการทำให้ Generative AI มีความเป็นมิตรต่อสิ่งแวดล้อมมากขึ้น คือการใช้งานในสถานที่ที่ใช่ ในเวลาที่เหมาะสม โดยความเข้มข้นของคาร์บอนจากแหล่งพลังงานในท้องถิ่นจะแตกต่างกันไปตามปัจจัยหลายประการ แนวปฏิบัติที่ดีที่สุดคือการใช้การจัดตารางเวลางานที่คำนึงถึงพลังงาน ควบคู่ไปกับบริการการติดตามและการคาดการณ์คาร์บอนเพื่อลดการปล่อยก๊าซที่เกี่ยวข้อง
พร้อมตั้งเป้าซื้อแหล่งพลังงานสะอาดใหม่ตามที่วางแผนไว้สำหรับนำมาใช้ The Greenhouse Gas Protocol ที่กำลังกำหนดให้บริษัทต่าง ๆ จัดทำการวิเคราะห์พลังงานสะอาดอย่างละเอียดเพิ่มเติมตามแหล่งสถานที่ ช่วงเวลาของวัน หรือทั้งสองอย่าง